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1 Introduction

The Griewank function [1] has been widely used to test the convergence of
optimization algorithms [2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15] because its
number of minima grows exponentially as its number of dimensions increases
[7; 14]. The function is defined as follows:

fn(~x) =
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos

(
xi√

i

)
+ 1

within [−600, 600]n where n is the number of dimensions of the function. The
global minimum is located at ~0 with a value of 0. The actual number of minima
may not be important when global optimization is performed, but it needs
to be known to test techniques that search for local optima. Most studies
vaguely mention the number of minima of the Griewank function [7; 8; 9],
and, to the best of our knowledge, no analytical derivation to determine it has
been given in the literature. Knowing the number of minima is critical if the
Griewank function serves as the basis for evaluating algorithms designed to
find local minima as well as global ones (i.e., multi-modal optimization). In
some cases [14], the number of solutions given is inconsistent with analytical
results. For example, [14] compared the ability of NichePSO, nbest PSO, lbest
PSO, sequential niching, and deterministic crowding based on the number of
minima found through numerical searches. However, further work with another
algorithm has found a different number of solutions than found by [14]. In order
to address this issue and provide a consistent basis for comparing algorithms,
this paper analytically derives the number of minima of the Griewank function.
We develop an approach in three basic steps. First, we restrict the search space
to a hyperrectangle. Second, we show that the hyperrectangle is the maximum
possible hyperrectangle of the Griewank function within which local minima
on the Griewank function correspond to tangent points on a simpler surface.
Third, we develop an analytical approach for counting the number of the
tangent points on the simpler surface. This approach yields an accurate count
of the number of local minima of the Griewank function within the defined
hyperrectangle.

Section 2 elaborates on the characteristics of the function surface and rede-
fines the problem of counting the number of minima to make it analytically
tractable. Because of the complex nature of the function surface, the domain
space needs to be restricted to hyperrectangles found by the numerical method
introduced in Section 2. Although the analytical method to determine the
number of minima derived in Section 3 cannot be applied to arbitrary do-
main spaces, it should be noted that the method does not miss any minima

folivera@civil.tamu.edu (Francisco Olivera), sguikema@jhu.edu (Seth
D. Guikema).
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within hyperrectangles satisfying certain conditions. As most optimization al-
gorithms are tested within fixed hyperrectangles, it remains practical to use
hyperrectangles as domain spaces for testing many optimization algorithms.

2 Redefinition of the problem

The partial derivative of the Griewank function with respect to xi is

∂fn(~x)

∂xi

=
xi

2000
+

sin
(

xi√
i

)

√
i

·
n∏

j=1, j 6=i

cos

(
xj√
j

)
.

It is difficult, if not impossible, to analytically solve this non-linear system
involving n variables. Global and local minima have to satisfy the following
conditions:

f ′n,i(~x) =
xi

2000
+

sin
(

xi√
i

)

√
i

·
n∏

j=1, j 6=i

cos

(
xj√
j

)
= 0 for i = 1, · · · , n (1)

f ′′n,i(~x) =
1

2000
+

1

i
·

n∏

j=1

cos

(
xj√
j

)
> 0 for i = 1, · · · , n (2)

where f ′n,i(~x) and f ′′n,i(~x) are the first and second derivatives of fn(~x), re-
spectively. Note that i is an index for dimensions. Inequality (2) is required
to ensure that maxima are not taken into account. By rearranging (2), we

obtain
∏n

j=1 cos
(

xj√
j

)
> − i

2000
. Because the region of non-positive values of

∏n
j=1 cos

(
xj√

j

)
satisfying (1) and (2) (i.e., fn(~x) ≥ 1

4000

∑n
j=1 x2

j +1 at local min-

ima) is outside of the region of its positive values (i.e., fn(~x) < 1
4000

∑n
j=1 x2

j +1
at local minima), problem domains in this paper are restricted such that

n∏

j=1

cos

(
xj√
j

)
> 0. (3)

Since a value of i
2000

is small for low dimensions, not much portion of the
function space is lost. Eq. (1) can be rewritten as follows:

sin

(
xi√

i

)
= −xi

√
i

2000




n∏

j=1, j 6=i

cos

(
xj√
j

)

−1

(4)

where
∏n

j=1, j 6=i cos
(

xj√
j

)
6= 0 because

∏n
j=1 cos

(
xj√

j

)
> 0.

Because fn(~x) meets the surface 1
4000

∑n
j=1 x2

j at the global minimum and near
local minima, we will find the minima of fn(~x) by finding the tangent points
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of fn(~x) on the simpler surface 1
4000

∑n
j=1 x2

j and deriving the relationship be-
tween these two sets of points. In the following, tangent points refer to the
tangent points of the Griewank function on the surface 1

4000

∑n
j=1 x2

j unless
otherwise noted. Since we only want to know the number of minima, their ex-
act coordinates are not of direct interest. In this paper, the number of minima
is indirectly derived by counting the number of tangent points associated with
them. Because the tangent point associated with the global minimum is the
global minimum itself, this method also takes into account the global mini-
mum. Therefore, problem domains have to be carefully defined so that there
exists one minimum for each tangent point. As i or xi increases, f ′n,i(~x) also
tends to increase along the line xi

2000
and, eventually, no points satisfying (1) are

found, which makes global optimization easier [7]. Because there are high cor-
relations between dimensions in high-dimensional problems, it is hard to deter-
mine whether or not there are local minima satisfying 0 <

∏n
j=1 cos

(
xj√

j

)
< 1

by inspecting f ′n,i(~x) surfaces separately. It is necessary to know the maximum
extent of each xi beyond which there are no local minima associated with tan-
gent points as shown in Fig. 1. For n = 1, it is trivial to check the maximum
extent of x1 because all the points lie on f ′1,1(x1). For n ≥ 2, a numerical anal-
ysis is required to estimate the corners of the hyperrectangle beyond which
there exist tangent points not associated with any local minima.

1

4000

∑n
j=1

x2

j

fn(~x)

1

4000

∑n
j=1

x2

j + 2

Tangent points

Largest local minimum

Associated

Fig. 1. Out-most region of one dimension of the Griewank function beyond which
there exist no more minima. Note that only the tangent point on the left-hand side
of the gray region is associated with a local minimum. Problem domains should be
smaller than the hyperrectangle defined by the gray region for the method presented
in this paper to be valid.

While tangent points are evenly distributed at every 2π
√

i, local minima are
not. If the boundary of a domain space is located between a tangent point
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and its corresponding local minimum, the number of tangent points is not the
same as the number of local minima. For this reason, a problem domain U is
defined as U = (0, 2π

√
iki) where ki ∈ N. The maximum value of ki, ki,max, is

defined such that the largest local minimum associated with a tangent point
is located in

(
2π
√

i(ki,max − 1), 2π
√

iki,max

)
. Using the periodicity of the sine

curve, the ki
th local minimum, ~xki = (xki

1 , · · · , xki
n ), is obtained by solving the

following shifted version of (4):

sin

(
x′i

ki

√
i

)
= −x′i

ki
√

i + 2πi(ki − 1)

2000




n∏

j=1, j 6=i

cos

(
xki

j√
j

)

−1

(5)

where x′i
1 = x1

i and x′i
ki = xki

i − 2π
√

i(ki − 1).

For one-dimensional problems, (5) is further simplified by setting n = 1 and∏n
j=1, j 6=i cos

(
xj√

j

)
= 1. If the both sides of (5) meet at x′i = 3

2
π
√

i, there are no

local minima at this point because the value of
∏n

j=1 cos
(

xj√
j

)
does not satisfy

(3). By solving

−
3
2
πi + 2πi(α− 1)

2000




n∏

j=1, j 6=i

cos

(
xj√
j

)

−1

= −1

where α ∈ R, we obtain

ki,max = bαc =

1000

πi
·

n∏

j=1, j 6=i

cos

(
xj√
j

)
+

1

4



where b·c is the maximum integer less than or equal to a given number (i.e.,
the flooring function). However, since the Griewank function is defined within
[−600, 600]n, 2π

√
iki,max must be less than or equal to xmax = 600. Therefore,

ki,max is

ki,max = min




⌊
xmax

2π
√

i

⌋
,

1000

πi
·

n∏

j=1, j 6=i

cos

(
xj√
j

)
+

1

4



 (6)

and, given a one-dimensional domain space (0, 2π
√

iki) where 1 ≤ ki ≤ ki,max,
ki is the number of local minima.

In problems of more than one dimension, because the position of a local min-
imum in one axis is highly correlated with those in the other axes, it is not
trivial to analytically solve (5) for all dimensions. The values of cos

(
xi√

i

)
and

ki,max for i = 1, · · · , n can be numerically estimated with the pseudo code
presented in Fig. 2. The subroutine defined in Fig. 3 is used to solve (5) for
each dimension at a time. x′i

k found in this way may not be the correct one
because the correlation between dimensions is not taken into account when
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solving (5). An estimated value of x′i
k is used to evaluate

∏n
j=1, j 6=i cos

(
xj√

j

)
,

which is iteratively plugged into (5) to estimate the next value of x′i
k.

Require: n ≥ 1 {Problem dimension}
Require: εf {Training threshold for f ′n,i(~xki,max

)}
Require: εc {Training threshold for cos

(
xi√

i

)
}

Require: itermax {Maximum number of iterations for cos
(

xi√
i

)
}

xmax ⇐ 600 {Initial domain}
~cout ⇐ ~1 {n-tuple output vector}
repeat

for i = 1, · · · , n do
~ctr ⇐ ~1 {n-tuple training vector}
for iter = 1, · · · , itermax do

x
ki,max

i ⇐ getxi(~ctr, i) in Fig. 3

ctr,i ⇐ cos

(
x

ki,max
i√

i

)

if iter > 1 and |ctr,i − cprev| < εc then
break

cprev ⇐ ctr,i

for j = 1, · · · , n, j 6= i do
ctr,j ⇐ cos

(
getxi(~ctr,j)√

j

)

cout,i ⇐ ctr,i

if
∣∣∣f ′n,i(~xki,max

)
∣∣∣ ≤ εf for i = 1, · · · , n then

break
xmax ⇐ xmax − 2π

until xmax ≤ 0
return ~cout

Fig. 2. Pseudo code to estimate cos
(

xi√
i

)
for i = 1, · · · , n.

Once ki,max is estimated, a problem domain needs to be defined. Define a prob-
lem domain by U = (0, xi,max), where 0 < xi,max ≤ 2π

√
iki,max, such that xi,max

does not have to be 2π
√

iki where 1 ≤ ki ≤ ki,max. When
∏n

j=1, j 6=i cos
(

xj√
j

)

is greater than 0, a local minimum is found in
(
2π
√

iki − 1
2
π
√

i, 2π
√

iki

)
be-

cause cos
(

xi√
i

)
is greater than 0 satisfying (3), and (4) can hold true only in

this range. Likewise, when
∏n

j=1, j 6=i cos
(

xj√
j

)
is less than 0, a local minimum is

found in
(
2π
√

iki − 3
2
π
√

i, 2π
√

iki − π
√

i
)
. Thus, xi,max needs to avoid these

ranges because, otherwise, it is possible to find local minima not associated
with tangent points at xi = 2π

√
iki ± π

√
i, which means that the analytical

method introduced in this paper cannot be applied. Therefore, the allowable

6



Require: n ≥ 1 {Problem dimension}
Require: xmax > 0 {Problem domain}
Require: ~cin {Input: cos

(
xi√

i

)
values}

Require: i {Input: the current training dimension}
Require: All other variables are local ones.

for i′ = 1, · · · , n do
cos

(
xi′√

i′

)
⇐ cin,i′

calculate ki,max according to (6)

estimate x′i
ki,max by solving (5)

x
ki,max

i ⇐ x′i
ki,max + 2π

√
i(ki,max − 1)

return x
ki,max

i

Fig. 3. Pseudo code for the getxi subroutine.

range of xi,max is either

[
2π
√

iki − 2π
√

i, 2π
√

iki − 3

2
π
√

i
]

or [
2π
√

iki − π
√

i, 2π
√

iki − 1

2
π
√

i
]
.

The above conditions for xi,max can be interpreted as

0 < xi,max ≤ 2π
√

iki,max (7)

and

xi,max ∈ X =

{
xi

∣∣∣∣∣ xi is a multiple of
π

2

√
i ∨

⌊
xi

π
2

√
i

⌋
is an even integer

}
.

(8)
In case xi,max does not satisfy (8) because integer values for xi,max are preferred,
we need to make sure that there are no local minima in

(⌊
xi,max

π
2

√
i

⌋
· π

2

√
i, xi,max

)
(9)

where 0 < xi,max ≤ 2π
√

iki,max and xi,max /∈ X. This test can be done indirectly
by checking whether or not the distance in the ith axis between xi,max and the
closest tangent point whose coordinate is greater than xi,max is greater than
the possibly largest distance between them. The closest tangent point whose
coordinate is greater than xi is

ti(xi) =

⌈
xi

π
2

√
i

⌉
· π

2

√
i.

Likewise, the largest distance between a local minimum and its corresponding
tangent point is obtained by calculating ti(x

ki,max

i )−x
ki,max

i because ti(x
k
i ) is the

7



tangent point associated with xk
i , and the distance between them also increases

as xi increases. If ti(xi,max) − xi,max is greater than ti(x
ki,max

i ) − x
ki,max

i , there
must be one local minimum in (xi,max, ti(xi,max)) along the ith axis, which
means that there are no local minima in the range defined by (9).

When xi,max satisfies all the requirements described above, a domain space
can be extended to U = [−xi,max, xi,max] ∀i ∈ {1, · · · , n} because the nega-
tive domain space (−xi,max, 0) is symmetrical to (0, xi,max), and the analytical
method derived in the following section takes into account both regions im-
plicitly.

3 Derivation of the number of minima

In the previous section, the problem was redefined so that the number of
tangent points is the same as the number of minima. The cosine function is
defined in [−1, 1] and, thus, the range of the function

∏n
j=1 cos

(
xj√

j

)
is also

restricted to [−1, 1]. Consequently, 1−∏n
j=1 cos

(
xj√

j

)
has a value in [0, 2] and

fn(~x) in
[

1
4000

∑n
j=1 x2

j ,
1

4000

∑n
j=1 x2

j + 2
]
. Therefore, tangent points of fn(~x) lie

on the surface 1
4000

∑n
j=1 x2

j when
∏n

j=1 cos
(

xj√
j

)
is 1.

The absolute value of cos
(

xi√
i

)
is 1 when xi is a multiple of π

√
i. The times∣∣∣cos

(
xi√

i

)∣∣∣ equals to 1 depends on the range of xi or [xi,min, xi,max]. The number

of π
√

ik, where k ∈ Z, within this range is calculated as

Ni =

⌊
xi,max

π
√

i

⌋
−

⌈
xi,min

π
√

i

⌉
+ 1.

The number of xi’s satisfying cos
(

xi√
i

)
= 1 is

N+
i =

⌊
xi,max

2π
√

i

⌋
−

⌈
xi,min

2π
√

i

⌉
+ 1

and the number of xi’s satisfying cos
(

xi√
i

)
= −1 is

N−
i = Ni −N+

i =

⌊
xi,max

2π
√

i
+

1

2

⌋
−

⌈
xi,min

2π
√

i
− 1

2

⌉
.

Now, the number of maxima and minima can be expressed as Mn =
∏n

j=1 Nj.
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Counting the number of n-tuples in the set

An =





(
cos

(
x1√
1

)
, · · · , cos

(
xn√
n

))
∈ [−1, 1]n

∣∣∣∣∣∣

n∏

j=1

cos

(
xj√
j

)
= 1





is a combinatorial problem where combinations take place without repetitions.
Any element, cos

(
xi√

i

)
, of n-tuples belonging to the set An must have a value

of −1 or 1 because, otherwise, the absolute value of
∏n

j=1 cos
(

xj√
j

)
cannot be 1.

Because
∏n

j=1 cos
(

xj√
j

)
should be 1, an even number of elements in an n-tuple

have a value of −1, and the other elements have a value of 1. Therefore, the
number of n-tuples in the set An can be expressed as

bn
2 c∑

j=0

(
n

2j

)
=

bn
2 c∑

j=0

n!

(n− 2j)!(2j)!

where
(

n
2j

)
is the binomial coefficient. Encode n-tuples in An as (a1, a2, · · · , an)

where ai is either 1 or −1. If 1 and −1 are substituted with + and − symbols,
respectively, n-tuples in An can be represented as (+, +, · · · , +), (−, −, +,

· · · , +), (−, +, −, +, · · · , +) (i.e., one n-tuple of
(

n
0

)
and two examples of

(
n
2

)
,

respectively), and so on. Note that there are an even number of − symbols,
and the others are all +’s. The numbers of xi values satisfying ai = + and
ai = − are N+

i and N−
i , respectively.

Counting all the possible ~x vectors generating n-tuples in the set An can
be done recursively in terms of n. Let Sn be the number of minima for n-
dimensional problems. The simplest form is S1 = N+

1 for n = 1. For n = 2,
there are S1 minima when a2 is fixed to + because S1 number of x1’s satisfying∏n−1

j=1 aj = + also satisfy
(∏n−1

j=1 aj

)
an =

∏n
j=1 aj = +. If a2 is fixed to −,

∏n−1
j=1 aj must be −, and the number of a1 satisfying this condition is M1− S1

(i.e., the number of maxima for n = 1). Therefore, S2 = S1·N+
2 +(M1−S1)·N−

2 .
Generalizing this recursive form, the following equations are obtained:

S1 = N+
1 if n=1, (10)

Sn = Sn−1 ·N+
n + (Mn−1 − Sn−1) ·N−

n if n > 1 (11)

for [−xi,min, xi,max] ∀i ∈ {1, · · · , n}. Now, (10) and (11) can be expanded as
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follows:

S1 =
⌊
x1,max

2π

⌋
−

⌈
x1,min

2π

⌉
+ 1 if n=1, (12)

Sn = Sn−1 ·
(⌊

xn,max

2π
√

n

⌋
−

⌈
xn,min

2π
√

n

⌉
+ 1

)

+




n−1∏

j=1

(⌊
xj,max

π
√

j

⌋
−

⌈
xj,min

π
√

j

⌉
+ 1

)
− Sn−1




×
(⌊

xn,max

2π
√

n
+

1

2

⌋
−

⌈
xn,min

2π
√

n
− 1

2

⌉)
if n > 1

(13)

for [−xi,min, xi,max] ∀i ∈ {1, · · · , n}.

4 Results and discussion

Fig. 4 and Table 1 present the maximum estimated number of local minima,
ki,max, and the largest local minimum, x

ki,max

i , on the ith axis. They define
hyperrectangles within which (12) and (13) can be applied. Outside these
regions, the analytical method presented in this paper cannot be used to count
the number of minima. Fig. 4 shows ki,max for different dimensions. For n ≥ 43,
the numerical algorithm in Fig. 2 experienced difficulties in finding ki,max, and
no plots were drawn. This result might be caused by reducing the search space
by 2π in all directions. However, because the number of minima within only
a small fraction of hyperrectangles defined by x

ki,max

i is so high even for n = 3

(e.g., 1,215 minima in [−28, 28]3, a subspace of [−x
ki,max

i , x
ki,max

i ] ∀i ∈ {1, 2, 3}),
it would be practically enough to define domain spaces for up to n = 40. Table
1 shows ki,max and x

ki,max

i estimated for up to three-dimensional problems. Note
that ki,max for the same i varies with n because of the correlation between
dimensions. When defining a domain space by U = [−xi,max, xi,max] ∀i ∈
{1, · · · , n}, we need to make sure 0 < xi,max ≤ ti(x

ki,max
i ). This condition

satisfies (7) because ti(x
ki,max
i ) = 2π

√
iki,max for all the cases in Table 1. Also,

xi,max has to satisfy (8) or (9).

As a set of examples, domain spaces U = [−xmax, xmax]
n were evaluated for

1 ≤ n ≤ 3 where xmax ∈ {14, 28}. Note that, for the sake of simplicity, domain
spaces were chosen such that all xi,max = xmax. For xmax = 14, (8) holds true
when i = 1 or 2. The closest tangent point whose coordinate is greater than
x3,max = 14 is t3(14), and the distance in the 3rd axis between x3,max and t3(14)

is t3(14)− 14 = 2.32. This distance is greater than t3(x
k3,max

3 )− x
k3,max

3 = 1.24
for n = 3 as shown in Table 1. This means that the local minimum associated
with t3(x3,max) exists in (x3,max, t3(x3,max)), not in the range defined by (9) for
x3,max = 14. For xmax = 28, (8) holds true when i = 2 or 3. A visual inspection
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Fig. 4. ki,max versus i for different problem dimensions.

Table 1
Maximum estimated number of local minima and the largest local minimum in each
dimension. ki,max is the maximum estimated number of local minima on the ith axis
within xi ∈ (0, 600); x

ki,max

i is the largest local minimum on the ith axis; ti(x
ki,max

i )
is its corresponding tangent point; and ti(x

ki,max

i )− x
ki,max

i is the largest distance in
the ith axis between them.

n i ki,max x
ki,max

i ti(x
ki,max

i ) ti(x
ki,max

i )− x
ki,max

i

1 1 95 596.60 596.90 0.30

2 1 94 590.28 590.62 0.34

2 66 585.82 586.46 0.64

3 1 88 552.45 552.92 0.47

2 62 550.04 550.92 0.88

3 51 553.78 555.02 1.24

of the x1 axis and a numerical analysis show that there are no local minima in
the range defined by (9) for x1,max = 28. Because xmax ∈ {14, 28} satisfies the
boundary conditions specified by (8) and (9), we can safely use (12) and (13)
to calculate the number of minima of the Griewank function. Table 2 shows
the numbers of minima for the two search spaces for up to three dimensions.
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Table 2
Numbers of minima for [−14, 14]n and [−28, 28]n.

n [−14, 14]n [−28, 28]n

1 5 9

2 31 111

3 157 1,215

5 Conclusions

It is difficult to analytically solve the derivative of the Griewank function and
directly count the number of minima because of the complex nature of the
function surface. The problem of counting the number of minima was rede-
fined as counting the number of tangent points lying on a parabolic surface.
A numerical method was developed to find hyperrectangles within which this
approach can be applied, and the number of minima of the function was an-
alytically derived within these domain spaces based on a recursive functional
form. The maximum extents of hyperrectangles for up to three dimensions
were estimated, and the numbers of minima for two search spaces were pro-
vided as a reference.

The numerical and analytical methods introduced in this paper can be used to
determine the exact number of minima within the domain space defined by a
hyperrectangle satisfying certain conditions. The number of minima derived in
this paper can serve as a sound basis for evaluating multi-modal optimization
algorithms.
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